Lesson Plan Session 2

Problem Solving Practical Session

General Aspects:

1. Learning Goals:

To develop an understanding of mathematical problem solving strategies

To develop problem solving skills

2. General Strategy:

Working on 10 main problems, discuss methods taken to find solutions

3. Structure:

12 lesson segments: an introduction (including a refresher of previously discussed strategies, 10 main problem solving activities (including, reflection time, small group work and whole group discussion of strategies and lessons learned), and a concluding discussion.

4. Resources:

Worksheet, inquiry cubes, PowerPoint presentation

Development of the Lesson:

With the support of the Erasmus+ programme of the European Union

Task and Learning Activities	Expected Duration	Class Activity (potential difficulties)	Instructor Support	Goal and Assessment
Introduction Stages and Strategies of Problem Solving Teachers as Problem Solvers	5 mins	Brief discussion as reminder of Polya's stages of problem solving, and some key problem solving strategies which can be implemented generally Discuss importance of teachers as problem solvers	Explanation and facilitation of group discussion	Goal To revise key problem solving strategies Assessment Group discussion
Problem 1 Inquiry Cubes – Draw the side of the covered cube face	20 mins	Small groups work on solving problem (completing the pattern of the cube) Extension – groups design their own inquiry cube – swap with nearby groups	Direct anyone who has finished towards extension challenge (same approach)	Goal To improve problem solving skills Assessment Peer assessment, group discussion
		To finish – discuss approaches of each group	Enable whole group discussion before and after showing solution	

Problem 2 Four bags contain a number of 1's, 3's, 5's and 7's.	10 mins 10 mins	Small groups work on solving problem If necessary take hint Discuss various approaches to proving this First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve If found a solution, try to solve it a different way	Allow reflection time If hint needed: Has anybody managed to find 10 numbers? Is it possible at all? Prove it. Group discussion after Allow for group interactions After 7/8 minutes, show various possible strategies on slides – facilitate group discussion. Discuss any new/different methods found by group	Goal To improve problem solving skills Assessment Group discussion Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment Peer assessment, group discussion
Problem 4 The island of Aruba is well known for its beaches and predictable warm, sunny weather. In fact, Aruba's weather is so predictable that the daily newspapers don't even bother printing a forecast. Strangely enough, however, on New Year's Eve 2012, as the islanders were counting down the last 10 seconds of 2012, it began to rain. What is the probability, from 0	5 mins	As before: First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve	Allow for group interactions After 7/8 minutes, show various possible strategies on slides – facilitate group discussion.	Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment

to 1, that 72 hours later the sun will be shining?				Peer assessment, group discussion
Problem 5 What number is hidden under the car? 26 16 06 68 88 198 58	5 mins	As before: reflection time before splitting into groups of 2/3 Group work/discussion to solve	Allow for group interactions After 7/8 minutes, show solution on slides – facilitate group discussion.	Goal To improve problem solving skills Assessment Group discussion
Discussion	5 mins	Discussion of what the last two problems had in common – what is to be learned from this	Not always a "mathematical" solution – importance of logic and common sense	Goal To understand the importance of logic in problem solving Assessment Group discussion
Problem 6 (+)(+)(+)(+)(+) = 30 (+)(+)(+)(+) = 18 (-)(+)(+)(+)(+)(+) = 2 (+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(+)(5 mins	As before: First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve If found a solution – check with other groups, is it the same? If not why not?	Allow for group interactions After 7/8 minutes, show various possible strategies on slides – facilitate group discussion. Discuss any new/different approaches taken by group	Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment Peer assessment, group discussion
Problem 7	5 mins	As before: First few minutes reflection time before splitting into groups of 2/3	Allow for group interactions	<i>Goal</i> To improve problem solving skills, and

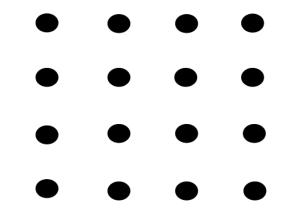
123 + 1423 +7453 = 218.06 Where do the decimals go?		Group work/discussion to solve If found a solution – direct towards extension problems	After 7/8 minutes, show solution on slides – facilitate group discussion.	enhance understanding of problem solving strategies <i>Assessment</i> Peer assessment, group discussion
Problem 8 In the 2012 Olympics, Usain Bolt from Jamaica won the gold medal in the 100m race with a time of 9.63s. In the first ever event of the modern Olympic games in April 1896, Thomas Burke from the US won the 100m race in a time of 12s. If both athletes ran in the same 100m race repeating their respective performances, what would be the distance between the athletes at the finish line?	10 mins	As before: First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve If found a solution – is there another way to solve this problem?	Allow for group interactions After 7/8 minutes, show solution on slides – facilitate group discussion. Any alternative approaches?	Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment Peer assessment, group discussion
Problem 9 The volume of a shape is 216. What can it be?	10 mins	As before: First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve If found a solution – are there other options for a solution?	Allow for group interactions After 7/8 minutes, show various possible strategies on slides – facilitate group discussion. Discuss any new/different shapes	Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment Peer assessment, group discussion

Problem 10 Two different families of frogs want to move over to the opposite side of the pond (i.e. the green frogs want to get to the right hand side and the yellow frogs want to move to the left hand side).	20 mins	As before: First few minutes reflection time before splitting into groups of 2/3 Group work/discussion to solve If found a solution – attempt one of extra problems	Allow for group interactions After 7/8 minutes, show various possible strategies on slides – facilitate group discussion. Discuss any new/different strategies	Goal To improve problem solving skills, and enhance understanding of problem solving strategies Assessment Peer assessment, group discussion
number of moves taken. Once you have this done, see if you can do it for a different number of frogs. Can you find a rule that predicts how many moves a given number of frogs will take?				
Conclusion Final points and allow for questions	10 mins	Group discussion/questions on problems and strategies One thing I learned today	Facilitate discussion	<i>Goal</i> To recap ideas of the day

	One thing I would like to know more about	Assessment Group discussion
	(Fill in via Poll.Ev.com)	Online poll

Extra Content:

Throughout the session, the following extension problems can be used (either with small groups or the whole group) for further activity if time allows:


Extra..... Problem 11

How many squares can you make using any four points from the grid shown as corners?

Extra..... Problem 12

How many equilateral triangles can you make using any three points from the grid shown as

corners? (diagram as above)



With the support of the Erasmus+ programme of the European Union

Extra..... Problem 13

In this problem we have a set of n disks all of different sizes, and we have three pegs. All of the disks are on the first peg, and they are in order of size with the largest disk on the bottom. The goal is to move all the disks from the first peg to the third peg, moving only one disk at a time. There is only one catch. You can never put a larger one on top of a smaller one. Can you find a rule that predicts the minimum number of moves a given number disks will take?

Extra..... Problem 14

Albert and Bernard just became friends with Cheryl, and they want to know when her birthday is. Cheryl gives them a list of 10 possible dates: May 15, May 16, May 19, June 17, June 18, July 14, July 16, August 14, August 15, August 17. Cheryl then tells Albert and Bernard separately the month and the day of her birthday, respectively.

Albert: I don't know when Cheryl's birthday is, but I know that Bernard does not know too.

Bernard: At first I didn't know when Cheryl's birthday is, but I know now.

Albert: Then I also know when Cheryl's birthday is.

So when is Cheryl's birthday?

Extra... Problem 15

In a long hall of the Arts Block, there are 100 lockers numbered 1 to 100. In preparation for the beginning of term, the custodian cleans the lockers, resets the combinations, and closes the locker doors. When the students return from summer vacation, they decide to celebrate the beginning of the college term

With the support of the Erasmus+ programme of the European Union *Problem Solving

by working off some energy. Student 1 runs down the row of lockers and opens every door. Student 2 closes the doors of lockers 2, 4, 6, 8, and so on to the end of the line. Student 3 changes the state of the doors of lockers 3, 6, 9, 12, and so on to the end of the line. (This means the student opens the door if it is closed and closes the door if it is open.) Student 4 changes the state of the doors of lockers 4, 8, 12, 16, and so on. This continues until every student has had a turn. When all 100 students have finished, which locker doors are open?

With the support of the Erasmus+ programme of the European Union

